Chronic TLR Signaling Impairs the Long-Term Repopulating Potential of Hematopoietic Stem Cells of Wild Type but Not Id1 Deficient Mice

نویسندگان

  • Ying Zhao
  • Flora Ling
  • Hong-Cheng Wang
  • Xiao-Hong Sun
چکیده

Hematopoietic stem cells (HSCs) maintain life-long blood supply but are inevitably exposed to various inflammatory stimuli, which have been shown to be harmful for HSC integrity but the mediators of the deleterious effects have not been fully identified. Here, we show that daily injection of mice with 1 µg of LPS for 30 days triggers a storm of inflammatory cytokines. LPS injection also stimulated the transcription of the Id1 gene in HSCs in vivo but not in vitro, suggesting an indirect effect. To determine the effects of LPS treatment on HSC function and to evaluate the significance of Id1 expression, we assess the repopulating potential of wild type and Id1 deficient mice, which were subjected to a 30 day regimen of LPS treatment. We found that LPS caused dramatic reduction in the long-term but not short-term repopulating activity of wild type but not Id1 deficient HSC. This treatment also led to increases in HSC counts, decreases in BrdU-label retention and disturbance of quiescence detected by Ki67 staining in wild type but not Id1 deficient mice. Together, it appears that Id1, at least in part, plays a role in LPS-induced damage of HSC integrity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ID1 Is a Functional Marker for Intestinal Stem and Progenitor Cells Required for Normal Response to Injury

LGR5 and BMI1 mark intestinal stem cells in crypt base columnar cells and +4 position cells, respectively, but characterization of functional markers in these cell populations is limited. ID1 maintains the stem cell potential of embryonic, neural, and long-term repopulating hematopoietic stem cells. Here, we show in both human and mouse intestine that ID1 is expressed in cycling columnar cells,...

متن کامل

Robo4 Plays a Role in Bone Marrow Homing and Mobilization, but Is Not Essential in the Long-Term Repopulating Capacity of Hematopoietic Stem Cells

Roundabout (Robo) family proteins are immunoglobulin-type surface receptors critical for cellular migration and pathway finding of neuronal axons. We have previously shown that Robo4 was specifically expressed in hematopoietic stem and progenitor cells and its high expression correlated with long-term repopulating (LTR) capacity. To reveal the physiological role of Robo4 in hematopoiesis, we ex...

متن کامل

Cell intrinsic defects in cytokine responsiveness of STAT5-deficient hematopoietic stem cells.

Secreted growth factors are integral components of the bone marrow (BM) niche and can regulate survival, proliferation, and differentiation of committed hematopoietic stem cells (HSCs). However, downstream genes activated in HSCs by early-acting cytokines are not well characterized. To better define intracellular cytokine signaling in HSC function, we have analyzed mice lacking expression of bo...

متن کامل

Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice.

Despite being a hallmark of hematopoietic stem cells (HSCs), HSC self-renewal has never been quantitatively assessed. Establishment of a clonal and quantitative assay for HSC function permitted demonstration that adult mouse HSCs are significantly heterogeneous in degree of multilineage repopulation and that higher repopulating potential reflects higher self-renewal activity. An HSC with high r...

متن کامل

Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells.

Telomere length must be tightly regulated in highly proliferative tissues, such as the lymphohematopoietic system. Under steady-state conditions, the levels and functionality of hematopoietic-committed or multipotent progenitors were not affected in late-generation telomerase-deficient mice (mTerc(-/-)) with critically short telomeres. Evaluation of self-renewal potential of mTerc(-/-) day-12 s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013